
"Managing the Software Development Process"

Presented at the Astronomical Data Analysis Software and

Systems (ADASS) IX Conference

October 5, 1999

By

Jeffrey T. Lubelczyk
NASA - GSFC

Code 586

Greenbelt, MD 20771

Amy Parra

Computer Sciences Corporation
Lanham-Seabrook, MD 20706



Abstract

The goal of any software development project is to produce a product that is delivered on

time, within the allocated budget, and with the capabilities expected by the customer and

unfortunately, this goal is rarely achieved. However, a properly managed project in a

mature software engineering environment can consistently achieve this goal. In this

paper we provide an introduction to three project success factors, a properly managed

project, a competent project manager, and a mature software engineering environment.

We will also present an overview of the benefits of a mature software engineering

environment based on 24 years of data from the Software Engineering Lab, and suggest

some first steps that an organization can take to begin benefiting from this environment.

The depth and breadth of software engineering exceeds this paper, various references are

cited with a goal of raising awareness and encouraging further investigation into software

engineering and project management practices.

Introduction

The goal of any software development project is to produce a product that is delivered on

time, within the allocated budget, and with the capabilities expected by the customer and

unfortunately, this goal is rarely achieved. However, Edward Yourdon argues that "a

properly managed project, in a mature software engineering environment, managed by a

competent manager, can repeatedly deliver a software system on time, within cost, and

satisfactory to the user [Yourdon 1997]." Thus, success is a product of only three

abstract variables, a properly managed project, a competent manager, and a mature

software engineering environment. In this paper we will address the three variables from

the perspective of "Can it really be that simple?". We want to emphasize that the

simplicity of the variables does not imply that implementing them is easy. Software is a

growing industry; as it matures finding methods to increase productivity and quality

while keeping cost under control will justify investing some effort in implementing these

simple concepts. The corresponding ADASS '99 presentation can be found on-line at

(http://seam.gsfc.nasa.gov).

A Properly Managed Project

A properly managed project has a clear, communicated, and managed set of goals and

objectives, whose progress is quantifiable and controlled and whose resources are used

effectively to efficiently produce the desired product. When properly managed, a project
usually has a communicated set of processes that cover the daily activities of the project,

forming the project framework. As a result, every team member understands their roles

and responsibilities and how they fit into the big picture, thus promoting the efficient use
of resources.

The processes also provide quantifiable feedback (metrics) with respect to process goals

and objectives. Metrics provide the information necessary to assess a project's progress

against a baseline project plan. Particular attention should be paid to the cost, schedule,

scope, and quality aspects of a project. One method of managing these areas is to apply



earnedvaluetechniquesthatprovideplannedversesactualfeedback.This approachcan
beusedona varietyprojectprocessessuchascodedevelopmentwhich canbe trackedas
shownin Figure 1[SEL 1995].

8

"6

100

9O

80

70

6o

5O

4o

30

20

10

System Acceptance
Design Code/Test Test Test

Build 2

Build 1

I
I

10 20 30 40 50 60 70 80 90 100

% of Schedule

Figure 1

A Competent Project Manager

A competent project manager is someone with the knowledge, skills, and experience to

lead a project to completion effectively and efficiently. A non-exhaustive list of the

characteristics of a competent project manager can be found in Appendix A. A project

manager uses the project framework as a tool to organize and control the project. A

project manager must have the ability to operate within a wide and diverse set of roles

and responsibilities. Roles and responsibilities that involve communication with the

customer or stakeholders can be considered project boundary management, others are

internal to the project and not seen or of interest to the customer(s).

Boundary management involves building positive relationships with custorffea-s and

stakeholders [Parker 1994]. A prime responsibility of the project manager isto serve as a

conduit for information exchange between the stakeholders and the project staff, which

involves balancing their competing demands. Changes in project schedule, cost and

scope (requirements) must be approved and negotiated. Agreements must be struck with

stakeholders with differing needs and expectations in order to establish a common set of

requirements and goals for the project to be working toward. Open communication is

essential and assuring that both the project members and stakeholders are speaking the

same language is key, which usually means speaking in terms that the customer

understands and eliminating much of the technical jargon.



Internally,aprojectmanagerprovidessupportandleadershipfor thedevelopmentteam,
andmanagesthe softwaredevelopmenteffort by ensuringthatthedefinedprocessesare
tailored,communicated,andfollowed. Unlesstheprojectis small,aproject managerwill
usuallynot bethetechnicallead. Their primary roleis oneof risk mitigation. They
identify projectproblemareasbasedonprocessfeedback,investigatetheroot causeof
projectproblemsanddetermineif they aretechnical,process,or peoplerelated,andapply
resourcesto areasthatwill havethebiggestreturnon investment.

In anydevelopmenteffort, peopleput theprojectframeworkin motion. As such,staffing
andteambuilding arecritical rolesfor theprojectmanager,it isno longerenoughto
simply work costandscheduleissues.A project managermustgetthemostout of their
humanresourcesandakeyto gettingthemost outof peopleis to accepttheobviousfact
thattheyaredifferent. Theyhavedifferentbackgrounds,experiences,andideasandit is
thisdiversity thataddsagreatdealof valueto aprojectanda greatdealof work for the
projectmanager.

Oneof thebestwaysto dramaticallyincreasethechanceof projectsuccessis to havea
teamwherethewholeis greaterthanthesumof thepart,ajelled team[DeMarco 1987].
Onegoodway to helpateamtojell is to allow theteamto tailor theproject frameworkto
supporttheuniqueneedsof their project. A wonderfulprojectframeworkwon't provide
muchhelpto aprojectif theteamdoesn'tbelievein it. Tailoring is alsoaway to
improveproductivity andthecurrentprescribedbaselineprojectframework. By allowing
teamsto perform"controlledexperiments,"anorganizationpromotesanenvironmentfor
buildingjelled teamsandputstheHawthorneaffectto work for it [DeMarco 1987].

Havingteammembersagreeonacommonsetof processesis notaneasyjob. It requires
keenskills in facilitation,conflict resolution,andcommunication.A goodway to helpa
diverseteamdefineacommonsetof processesis to first developacommonsetof goals
for theproject. Anotherperhapsnotsoobviousfact is thatteamsdon't attaingoals;
peopleon theteamsattaingoals. Thus,thepurposeof ateamis notgoal attainmentbut
goalalignment[DeMarco 1987].Sowhenthe occasionalproject"Holy War" develops,
i.e. "What is anobject,"thesegoalscanbeusedto facilitatea negotiatedpeaceandhelp
thepartieswork towardagreementon acommonapproach.

Oneway to helpateamstayfocusedon its goalsis to generateaweeklystatusreport. It
servesasa meansto remindthemof approachingscheduledmilestones,provide them
with thoughtson how well theprojectis doing in theeyesof thestakeholders,
communicateissuesby includingaverbatimcopyof eachsubsystem'sstatusreport,and
motivatetheteamby supplyinga"quoteof theweek." A commonmistakemadeby
organizationsis to haveinformationonly flow up themanagementchain. This omission
of bi-directionalcommunicationdiscouragesteamownershipbecauseonly the managers
haveacompleteunderstandingof aproject's statusandissues,resultingin atop down
decision-makingparadigm.Keepingateaminformedof aproject'sstatusencourages
themto jell andbepartof thesolution. This simpletool improvesateam'sproductivity
by removingadecisionmakingbottleneck,thus improvingprocessandteamefficiency.



A mature software engineering environment

The concepts of a mature software engineering environment are easily described in

comparison with an immature environment. In the area of processes, an immature

environment's processes are ad hoc (or chaotic) and the individual projects are

independently defining and improving their processes, resulting in unrelated processes

and metrics from project to project. This environment lends itself to poor and often

optimistic project cost and schedule estimates because these estimates are usually not

based on quantifiable historical data. Product quality will be inconsistent across projects

and may not be improving over time. Process improvement will be limited at best and

usually will not take place across an organization. This lack of coordination and

communication of corporate knowledge produces an organization that may have

concurrent successful and unsuccessful projects.

An immature software engineering environment offers little support from the

organization, which means that project success must solely rely on the skills, talent, and

heroic efforts of the personnel on the project. A chaotic environment forces the manager

to be reactive to problems as they occur, because the process feedback is unavailable.

This information vacuum severely limits their ability to control and mitigate the risks

associated with a project. This absence of information further inhibits an organization

from improving by not providing the historical documentation needed. This fire fighting

method of management may be useful in the short run to solve immediate problems, but

results in a myopic short term perspective which doesn't promote the efficient use of

resources. This also makes the repeatability of an experience for future work or additional

builds difficult if there is project turn over, because success depended on internal

processes that heroic and talented individuals naturally follow. Replacing people requires

a long learning curve in training personnel before they are fully able to contribute to the

project.

Success is not a term often associated with an immature software engineering

environment. Optimistic cost and schedule estimates, undefined processes and metrics,

and undefined product quality are huge obstacles that must be overcome by the project

personnel in order to achieve project success. Basic PERT analysis predicts that a project

in this type of organization has only a 16.7% chance of meeting cost and schedule

estimates with inconsistent product quality, not a recipe for success.

Now let us look at these organizational properties from the perspective of the'Mature

Software Environment. A mature software engineering environment provides the

historical support and feedback for the project management process. This support results

in improvements in several key project processes such as planning by providing a basis

for realistic cost, schedule, and staffing estimates; controlling by supplying metrics that

quantify project progress and product quality; and product development by defining the

base-line project framework and product standards. It also serves as the basis for long

term improvement by supplying improvements to the current baseline set of development

processes.

5



Repeatability comes naturally when processes are both defined and documented. The

reuse of processes, or project framework, increases the accuracy of the predicted product

quality. Measures are taken to understand and monitor products and processes. These

measures are also captured and analyzed by the software engineering group and provide a

historical basis for the estimation of project cost, staffing, and schedule. Improving

estimates based on historical data dramatically increases the chances of project success,

since estimates provide the baseline for the project. Using an organization's historical

data further improves estimates by tailoring a generic model as shown in Figure 2 [SEL

1995].

k--
rl-
O
h
It
UJ

DESIGN J CODE/TEST

|
Deviation: More staff required to meet schedules

Possible causes:

a) More complex problem

b) Unstable requirements causing extensive rework

c) Inexperienced team
|

J SYSTEM J ACCEPTANCETEST TEST

I I
I I
I I
I I
I I

I SEL PLANNING MODEL

RAYLEIGH CURVE _i i

I
TIME

Figure 2

The project manager is involved in the process as the coordinator; planning, organizing,

staffing, leading, controlling, and communicating [Mackenzie 1969]. Roles and

responsibilities are clearly defined, the manager and the developers are awa(e of what is

expected of them. Reactionary management occurs less often, allowing for the proactive

allocation of resources to mitigate identified risks. Crisis is not a way of life for the
mature software environment.

These mature characteristics are not merely for the large organization. Watts

Humphrey's Personal Software Process is a formal example of how an individual can

measure, monitor and improve their individual performance[Humphrey 1996]. A more

simplified example would be for individuals to monitor their own performance using time

management tools, such as the Franklin Planner, which results in their ability to estimate

future work based on documented past performance. At the small group level, an



organizationthat uses configuration management, analysis of metrics, and project

management is well on it's way to becoming a mature software engineering environment.

In the case of Computer Sciences Corporation at the NASA Goddard Space Flight

Center, the use of mature software engineering characteristics has resulted in an

organization that is both ISO 9001 compliant and CMM Level 5 (Optimizing). These

two tools can be used to guide an organization toward maturity in software engineering.

While building a mature software engineering environment, the CSC organization has

seen a reduction in errors per KSLOC from 6.5 in 1985 to .74 in 1996. This was

accompanied by a reduction in Mission Cost by a factor of two and an increase of reuse

from 22% to 78%. This is baselined data that is averaged over typical projects. Building

a mature environment requires some investment but the benefits and improvement of the

software product are quantifiable.

Recommended First Steps

The goal of this presentation was to raise awareness and to encourage further

investigation of the application of software engineering and project management

techniques to your organization. We suggest that you become familiar with some of the

basic software engineering project management concepts. The recommended reading list

given here is small, and intended only as a very introductory list. For additional education

there are formal classes in software engineering and project management as well as
conferences.

Next, determine your organizational goals and find a way to measure (quantify) how your

goals will be met. Improvements that do not relate to your goals will have little affect in

the areas that you care about, reducing the effectiveness of your investment in the area of

software engineering and project management.

Then start applying project management and software engineering techniques in small,

focused, and goal oriented areas that will produce results quickly. This recommendation

allows you to test out improvements as well as increase their value. The SEL for years

has learned by conducting small experiments and then taking that information to a larger

group once the value of the technique evaluated has been assessed. Finally, begin to

understand the environment in which your organization is developing software. This

understanding serves as the basis for process assessment and long term process

improvement.

Suggested Reading List:

"Software Engineering Project Management" edited by Richard Thayer, IEEE computer

Society (ISBN: 0-8186-8000-8)

Information to help you understand and successfully perform the unique role of

the software project manager.

"Peopleware" by Tom DeMarco, Dorset House Publishing (ISBN: 0-932633-05-6)



Effective ideasfor managingthehumanresource.

"CrossFunctionalTeams"byGlennParker,Jossey-BassPublishers(ISBN:
609-3)

Practicalprovenpracticesfor working with teams.

1-55542-

"A Guideto theProjectManagementBody of Knowledge"by thePMI Standards
Committee,ProjectManagementInstitutePublishingDivision (ISBN: 1-880410-12-5)

An overviewandguideto projectmanagementconceptsestablishedby the
ProjectManagementInstitute.

"SoftwareMeasurementGuidebook"by theNASA GSFCSoftwareEngineeringLab
(NASA-GB-001-94)

Providesguidancefor establishingameasurementprogramin anorganization.
Copiesmaybeobtainedon-lineat (http://sel.gsfc.nasa.gov/).

"SoftwareManagementGuidebook"by the NASA GSFCSoftwareEngineeringLab
(NASA-GB-001-96)

Providesalist of coreproductsandactivitiesrequiredof NASA softwareprojects
aswell asprovidingguidancefor managingsoftwareprojects.Copiesmaybe
obtainedon-lineat (http://sel.gsfc.nasa.gov/).

"RecommendedApproachto SoftwareDevelopment"by theNASA GSFCSoftware
EngineeringLab(SEL-81-305)

Providesasetof guidelinesthat constitutea disciplinedapproachto software
development.Copiesmaybeobtainedon-lineat (http://sel.gsfc.nasa.gov/).

Appendix A - Somecharacteristicsof acompetentprojectmanager

1) Values
a) Customerfocused
b) Dedicatedto success
c) Willing to acceptachallenge
d) Forwardthinkingandavoidstheblamegame
e) Valuesdiversityandis ableto obtain teamagreementon asetof bestpractices
f) Understandsthatcommunicationis essentialto projectsuccessandsupportsit in

everywaypossible
g) Understandsthenatureof thework beingmanaged '_

h) A pessimist with an optimistic attitude (Plan for the worst, hope for the best)

i) Understands the needs of others

j) Validates assumptions

2) Knowledge and Skills

a) Able to the right questions and knows a good idea when they hear one

b) Able to make timely decisions independently based on usually incomplete data

c) Able to lead, manage and administer (As needed) [Mackenzie 1969]

d) Able to negotiate



e)
0
g)
h)

i)
j)

k)

l)

Able to communicate and facilitate

Able to plan, organize, staff, lead, and control [Mackenzie 1969]

Able to understand and influence the organization [PMI 1996]

Able to endure an environment that offers lots of responsibility with little

authority

Process Improvement and Reengineering

Teambuilding
Conflict Resolution

Project Management Tools

i) Project organization charts and Role and Responsibility assignments

ii) Project meetings, status summaries and web pages

iii) Work Breakdown Structure

iv) Scheduling and estimation techniques such as network diagrams and PERT

v) Earned value analysis

vi) MS Project or similar application

vii) Project plan

viii) Risk analysis and mitigation strategies

ix) Requirement mapping and Quality Assurance

References

Yourdon, E. 1997, Forward to "Software Engineering Project Management", IEEE

Computer Society

The Software Engineering Laboratory 1995, "Software Measurement Guidebook", Figure

6-13, The NASA Software Engineering Laboratory at GSFC

Parker, G. 1994, "Cross Functional Teams", Chapter 7, Jossey-Bass Publishers

DeMarco, T. 1987, "'Peopleware", Chapter 18, Dorset House Publishing

DeMarco, T. 1987, "Peopleware", Chapter 17, Dorset House Publishing

The Software Engineering Laboratory 1995, "Software Measurement Guidebook", Figure

6-6, The NASA Software Engineering Laboratory at GSFC

Mackenzie, A. 1969, "The Management Process in 3-D", Harvard Business Review

Humphrey, W. 1996, "Introduction to the Personal Software Process", Addison-Wesley

Publishing Company

PMI Standards Committed, 1996, "A Guide to the Project Management Body of

Knowledge", Project Management Institute Publishing Division


